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Abstract. Starting f” a Tust principles basis deformation of a Riemannian manifold, a new 
&ne connection is derived that contains both gravitational and electromagnetic fie!ds on equal 
footing term for term. Using this connection, it is shown that parallel transport of the tangent 
vector OB a cmve yields the Lorenu force quadon for a charged panicle, while uansport of the 
normal vector yields the equation of motion for a classical spin including the covariant Thomss 
precession. Furthermore, the new electrodynamic connection exactly satisfies the form and the 
compatibility criteria for the general non-symmetric connection sought by Schrbdinger for his 
affine field theory. The results of the present work are shown to be equivalent to introducing an 
elemdynamic torsion on the manifold thus rendering it non-Rie”ian. The new connection 
may serve to illuminate the geometry of electmdynamics. 

PACS numben: OXOH. OXOK, 0350D. 0450 

1. Introdoction 

We shall develop in this paper a new non-symmetric afIine connection, incorporating 
gravitational and electromagnetic forces, grounded in the theory of the deformation of tensor 
manifolds of Dienes [l]. The electromagnetic 4-vector potential acts as the deformation 
vector in the new geometry. The new connection will be shown to be exactly the general 
non-symmetric connection that Schrodinger prescribed as the solution form for his original 
af3ine theory and satisfies his ‘compatibility’ condition [Z]. Furthermore, it will be shown 
that it can be independently derived from the assumption of a particular electrodynamic 
torsion present in the space according to the geometric development of Schouten [3]. 

Although this work was initially motivated by a mathematical parallel between 
electromagnetism and a Riemannian generalization of the classical theory of elasticity of 
Green and Zema [4] and Cobum [5 ] ,  it became clear that point deformations, the foundation 
of elasticity theory, were inadequate to describe the known physics. This is particularly 
evident in the failure of Weyl‘s theory from lack of length invariance. A more general 
formalism can be found in the theory of deformation of tensor manifolds of Dienes who 
treats both point and basis deformations. We shall use basis deformation theory, not as 
an end in itself, but as a means to illuminate a new route to a possible embedding of 
the electromagnetic fields into a metric geometry. The end result of this paper will be 
the development of a new non-symmetric &ne connection which has several remarkable 
properties. 

We begin, in section 2, by developing Dienes’ basis deformation theory and then 
showing how it can be extended to yield a ‘physical’ a f h e  connection. In sections 3 
and 4, we shall apply the new connection, via a vector transport process, to generate the 
Minkowski equation of motion for a massive point charge as well as the equation of motion 
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for a classical spin including the Thomas precession. The latter result is new-from a 
geometric standpoint. In section 5 we show that the connection appears to match what 
Schrcdinger sought for his early affine theoiy. In section 6 the connection is derived from 
a torsion introduced on the manifold. 

The new 'electrodynamic connection' is the central geometric object developed in this 
paper. Its significance in the context of SchrGdinger's work is evident and may further 
illuminate it, but the present work is also an example of the physical significance of torsion, 
a subject of recent interest 16.71. 

2. Deformation theory 

As mentioned earlier, Dienes develops both the theory of point deformations and the theory 
of basis deformations. He defines two states of a Riemannian manifold-initial undefonned 
and final deformed. His point deformation theory, which distinguishes the initial undeformed 
from the final deformed coordinates, leads to the generalized theory of elasticity on a 
Riemannian manifold. When developing his basis deformation theory, however, Dienes 
does not distinguish between the undeformed and the deformed coordinates since. only a 
basis deformation is involved at a given point. We shall show that when this distinction is 
retained, physically meaningful results follow. 

We shall adopt the basis deformation theory of Dienes. The standards used generally 
follow Adler [SI and Barut [9]. 

We begin by providing some preliminary definitions that clearly describe the initial 
undeformed system Following Dienes, we require that orthonormality of the basis and 
parallel transport be preserved under the deformation. The latter condition means that a 
parallel vector field in the undeformed state remains parallel in the deformed state. This 
will permit us to correctly define the deformed mehic tensor and to obtain a simple deformed 
connection with respect to this metric. Length is not preserved in the deformed system, 
hence the remaining task will be to develop a new 'effective deformed' connection that can 
represent the deformation referenced to the initial undeformcd state. 

The connection of the metric tensor g,, of signature (-2) is given by 

(1) 

We introduce the tetrad e,. Each of the e,(K = 0, 1,2,3) is a 4-vector. Absolute 
differentiation of a covariant basis e, is given by 

p v  = -L zg d. ( a ,gv0 + a,g, - a.s.,,). 

De, = de, + rky dx'ei. 

ds2 =gp,dxpdxu (3) 

(2) 

The metric tensor is defined from 

where 

P . .  
g,, = e, .e, = qijeL& and e, . e, = SF ei ej, = vi,. 

Summation convention is used throughout and qij is the Minkowski tensor. In passing 
to the deformed system we may equivalently deform either the space via the metric tensor or 
the coordinate differentials. If both are deformed simultaneously, we shall find that, under 
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the covariant and contravariant deformation transforms defined below, both the length of a 
vector and the interval remain invariant. However, we shall not proceed with simultaneous 
deformations since this will also get us nowhere. We choose instead to first deform the 
metric allowing us to define a deformed connection under preservation of parallel transport. 
Having defined such a connection in the procedure described below, we are in a position to 
cany out inverse deformations on the vectors and coordinates back to the initial coordinates 
in such a way as to extract a meaninghl connection that describes the deformed state from 
the undeformed coordinates. This is a fairly complicated procedure where all coordinates 
are tracked under both basis deformations and parallel transport of vectors from an initial 
deformed state to a final undeformed state and a new 'effectively deformed' connection is 
obtained. For this reason, the full calculation is relegated to the appendix and only the 
definitions and relevant results are shown below. The deformed system is defined from: 

G~~ = E & .  E, E ,  . E, = 8; EPE,,  = vij. (4) 

Following Dienes, we introduce the covariant and contravariant basis deformations: 

EA = eA - K k A  EA = e'. -t Kk'. (5 )  

These relations consisting of the gravitational basis ep combined with what later is shown 
to be an electromagnetic deformation I C ,  are fundamental and follow strictly from the 
basis orthogonality requirement under the deformation. The quantity K/C@ is assumed to be 
small where K is a constant to be determined. The present theory assumes as infinitesimal 
deformation so that only terms of order K are retained. 

It follows that I C ,  and k' are related by the raising and lowering operations: 

ICv = euev.  ka IC" = e'e". I C , .  (6) 

The lowering operation, for example, can also be written in component notation: 

ki, = ei,ej,kjU. (7) 

The Latin indices refer to the scalar components of each 4-vector. It is evident from thii 
that the relations (6) can be written as deformation matrix operations upon the e basis: 

ICv = <,"ea e , .  IC' <,". (8) 

It can be shown that in the present case 

e , .  k' = ea.  I C ,  (9) 

so that there is no ambiguity in the matrix definition. Thus from relations (6) and (8) 
we may rewrite the relations (5) as deformation transforms for covariant and contravariant 
vectors. For covariant vectors, applied to our tetrad, we have: 

EA = D:eu D: z &,U - KC!.  (10) 

E' = bfeA Df 8; f K < f .  (11) 

For contravariant vectors: 
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6 is the Kronecker symbol. The inverse deformations are obtained simply by changing K 
to - K .  These operations will be used extensively in the appendix. From relations (4) and 
(5) we readily find the deformed metric tensor to order K :  

G,, = g,, - K(k, - e,  +el,. k,) Gp” = g” + K(k”.  ep + e”. k,). (12) 

From these, a connection may be defined with respect to the deformed mehic by substituting 
G from the relations (12) for g in expression (1). All terms to order K are retained leaving: 

FLY = rk, + $4eA . + k,,,) + e ,  (kat ,  - kr,o)g*u +e ,  (ko,v - k,:,)gAul. (13) 

The covariant derivatives are with respect to r, the undeformed connection. 
It can be shown, however, that this connection does not yield the correct equation of 

motion for a charged particle under parallel transport. The presence of the antisymmetric 
k factors in the second and third terms in the brackets-shortly to be related to the 
electromagnetic field tensor-is spoiled by the symmetric factor in the first term. It is 
this term that is responsible for the problems. However, r is the connection relative to 
the deformed metric and it is physically essential to reference the undeformed state where 
lengths are preserved. We therefore must find how this connection will appear with respect 
to the undefomed state by using our new basis transport properties. The full calculation is 
carried out in the appendix. 

The final ‘effective’ deformed connection is; 

f A  = r:, + (k,,, - k,:d + e, . (ko;,, - k,:,)g Aa +e,, . (kc:” - kv;,,)gAul. (14) w 

This connection is the foundation of all of our remaining work. Our evaluation of the 
deformed connection, equation (13), with respect to the undeformed state has introduced 
exactly the right correction term (appendix A) to make the symmetry of the first term 
in the brackets consistent with the others. The immediate consequence, however, is the 
non-symmetric connection, equation (14). 

Our task will now be to ascribe some physical meaning to this new connection. This is 
most transparent if we parallel transport the tangent vector under the effective deformation. 
We shall call this operation a ‘parallel deformation’ and it will enable us to identify the 
deformation vector k, with electrodynamic quantities. 

3. Equation of motion for a point charge 

We are now in a position to identify k, and the constant K .  Absolute differentiation of any 
vector C A  with respect to the new connection is given by 

6 c A = d ( ’ - f ~ , d x ” c C .  (15) 

We shall define a parallel deformation from the vanishing of the absolute derivative just 

dEA = f ~ , d x ” ~ ’ .  (16) 

This immediately yields the equation of motion of the tangent vector, u p s  with respect 

as in parallel transport so that C A  describes a ’geodesic’; 

to the undeformed metric and coordinates; 
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Inserting the deformation connection (14) and rearranging terms to define the absolute 
derivative with respect to the undeformed connection on the left-hand side yields the general 
result; 

DuA 
- = &U U [e . (k,, - kp;d + e , .  (knip - kp;n)gAu + e p .  (kc;" - kv;,,)g'u]. (18) ds 

1 1 "  A 

For K = 0, this equation is the usual geodesic of general relativity. Otherwise the 

Let us now expand the invariant 4-velocity and 4-vector potential in the basis e,: 
right-hand side represents 'forces' acting along the path. 

U = uwep A = Ape,. (1% 

We shall choose as our covariant and, according to the raising operation equation (6), our 
contravariant deformation vectors, the direct products of the velocity and vector potential: 

k, = uAV k" = u'A. (20) 

This choice represents the single ansatz of our theory. Inserting this into equation (17) 
yields 

DuA - = $d'u"[e ' .  u(AV;,,  - ApJ  + e , .  u ( A m i p  - A,:,)g*" + ep . u(A,; ,  - A,;,)g*"] 
ds 

(21) 

or 

DuA 
ds (22) 

In arriving at this result we have passed U through the covariant differentiation with 
respect to the undeformed connection. We can do this since the covariant derivatives of 
the basis vectors vanish and the U" are vector fields along a curve. Upon carrying out the 
summations on U and p, the first term on the right vanishes by symmetry while the second 
and thiid terms are identical upon interchanging dummy indices leaving 

Y.0 g -=I Z K U  P V  [U A A  ( u:p - Ap;v) + ~ v ( A a : p  - Ap;a)g'" + ~ f i ( A e ; v  - A , ) '<I. 

This is the Minkowski equation for a charge if the electromagnetic field tensor is 
identified as 

 FA^ = A,;' -AA+ (24) 

and K = -e /mcZ,  where e and m are the test particle charge and mass. Thus, the test 
particle as well as the external field is intimately coupled to the local deformation and the 
resulting geometty. 

Using the deformation vectors of equation (18) together with equation (14) defines the 
complete effective deformation connection; 

?iv = I$ + fKgAo(u,F,, + u,Fp, - u,F,,). (25) 
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A complete expansion reveals the remarkable symmetry between the electromagnetic 
and gravitational components: 

i;* p u  =-I ,g ( a pgvu + avgw + a,g,) + $ d A ( U p F ,  + U”F- - u,F,,). (26) 

We write this more compactly 

where 

11;. = ~guA((upF, ,  +uVFw - u ~ F ~ J .  

This connection is the central new result of this paper. It is the basis not only for 
describing the usual motion of the structureless test charge above but also, as will be shortly 
demonstrated, for describing the correct behaviour of a classical spin. It is interesting to 
Observe in hindsight that this connection could have been constructed by inspection from 
the Lorentz force equation alone with the exception, perhaps, of the antisymmetric third 
term which does not contribute to the charge motion. This term is nevertheless critical for 
OUT work as will be seen in the next section. 

Another point is worth noting here. Physical electromagnetic force terms appear 
alongside gravitational force terms in the connection. This is in sharp contrast to Weyl’s 
theory, for example, where the vector potentials appear in the connection. Thus a metric 
theory based upon this connection should introduce electromagnetic potentials alongside 
gravitational potentials in the metric solutions. Failure in this regard has in fact been 
a puzzling point in past theories. Recently it has been experimentally verified that the 
gravitational potential introduces quantum phase shifts in the neutron wavefunction [IO] in 
interferometry experiments and so it would seem that electromagnetic potentials, known to 
produce phase shifts in electron wavefunctions via the Aharonov-Bohm effect, should be 
on equal footing with the gravitational potentials and not with the gravitational forces as 
they are in all Weyl-type theories. 

As a check into the physical meaning of this connection. we evaluate the [i ,O.O) 
component, 

which is seen to be the sum of the gravitational and electric accelerations of the test particle 
and is the natural generalization of the usual gravitational field intensity term. In the next 
section we shall develop the first new dynamics resulting from this geometric structure as 
applied to a ‘classical’ spin. 

4. Equation of motion for a classical spin 

In the previous section we parallel deformed the tangent vector of the space and were able to 
identify the consequent equation of motion exactly with the Lorentz force law for a massive 
point charge thus determining K ,  the single parameter of this theory. It is reasonable then 
to ask if there are other vectors that, upon undergoing a parallel deformation, result in 
physically meaningful motion under the same parameter. One possibility is, of course, the 
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acceleration vector U” which is the principal normal to the path. This may very well be 
meaningful in the context of radiative effects but is beyond the scope of the present work. 
There is permitted, however, a complete orthonormal temd according to the Frenet-Serret 
equations for a curve 1111. In addition, these can all be related to Fermi-Waker transport 
which is discussed in detail by Synge 1121 and Misner [131 so that clearly there is room for 
other possibilities. 

Let us therefore represent this vector S’ in the most general way by simply requiring 
that it be normal to the tangent vector; 

S ” U ,  = 0. (29) 

Applying a parallel deformation to S” according to equations (16) and (27) gives: 

Using the orthogonality condition, equation (29), generates the exact equation of motion 
for a ‘classical spin’, Sa, with a g-factor of one: 

The 6rst term is, of course, the gyroscopic precession in a gravitational field and 
can be combined with the left hand side to represent an absolute derivative. The second 
term is the usual gyromagnetic precession while the third term is precisely the covariant 
Thomas precession. Most importantly, the Thomas term follows directly from the third 
antisymmetric term of our A connection, equation (27), which clearly demonstrates the 
generality of this expression. An extensive discussion of ’cIassical spin’ can be found in 
B a t  [9], p 73 and Jackson [14]. The spin equation is normally derived by seeking a 
covariant generalization of the rest frame gyromagnetic equation as was done by Bargmann 
et al 1151 or can be developed from a Lagrangian in the manner of Barut. The point is that 
this equation appears almost trivially from a parallel deformation. Geometrically speaking, 
the terms look like a gyromagnetic rotation vector together with a pure Fermi transport 
vector-the Thomas precession. 

What we have done so far is to create a new connection from strictly geometric 
first principles and show that this connection relates to the two well known equations 
of motion for charge and magnetic moment. However, we have not as yet demonstrated 
any relationship between this work and any prior work that might place the present results 
on a more h foundation. There is, in fact, just such a link. In the next section we shall 
show that the electrodynamic connection precisely matches the prescription for the general 
non-symmetric connection sought by Schrodinger in his later ‘unified’ affine theory and, as 
such, serves to further illuminate it. 

5. Schrodinger compatibility and the electrodynamic connection 

In the late 1940s, Schrodinger concentrated on several attempts to achieve a unified field 
theory without success as be, himself, insisted. These efforts are described by Hittmair in 
a Schrodinger centenary volume edited by Kilmister 1161. The work essentially culminated 
in his lucid and brilliantly written monograph, Space-Time Structure [17]. In it Schrodinger 
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succinctly derives the general form for a non-symmetric connection that is at the same time 
'compatible' with the requirement that an interval be defined in the space. Put another 
way, the general non-symmetric connection satisfies the requirement that the covariant 
derivative of the metric tensor vanishes under that connection, thereby assuring preservation 
of length upon parallel transport. We reproduce here Schrodinger's general non-symmetric 
connection: 

riv = -{id + 8"8~er~,l+ P~,.S&,~ + rhV, 

rim1 - - 2 i(p PW -r* YP ) ' 

(32) 

where the antisymmetric part of the connection is the last term, 

(33) 

Schrodinger notes that the general non-symmetric connection is fully determined from 
the metric tensor and the antisymmetric part alone. In developing equation (32), he 
first derives the symmetric part consisting of the Chriitoffel symbol and the next two 
terms. This is all that he can get from his analysis. He then simply adds the 'arbitrary' 
antisymmetric part-the last term-to complete the general form. Since he derived the 
symmetric component explicitly in terms of the antisymmetric part, this last stroke seems 
quite natural and significant. However, he goes on to say that since this term does not 
contribute to the geodesic motion then '. ..let us just scrap it' 1171, p 67. He then develops 
an alternative non-symmetric connection, the 'star affinity', which is still used to this day 
in non-symmetric gravity theories 1181. 

We now show that, in fact, Schrodinger lost significant generality by dropping the 
antisymmetric part of this earlier connection. Let us rewrite our electrodynamic connection 
and compare it with the Schrijdinger connection: 

= -{iv} + $Kgbg,,unFvc + ~KgMg,,UUFP, + $KUAFPv. (34) 

We immediately recognize that they are identical in form. Indeed, it is easy to verify 
that the covariant derivative of this connection vanishes as required by 'compatibility'. 
Furthermore there is the added benefit that Schrijdinger's heretofore unknown antisymmetric 
components are now identified with the desirable electromagnetic fields consistently in 
all three terms. It is precisely this last purely antisymmetric term-the one Schrodmger 
discarded-that gives rise to the Thomas precession in our classical spin equation of motion. 

Evidently we can identify the antisymmetric part as 

= S$ = $ K U " F , ~  (35) 

which serves geometrically as the torsion tensor of our space. 

6. Torsion in the geomehy of electrodynamics 

Having discovered this, we are now in a position to demonstrate that our 'electrodynamic 
connection' can in fact he derived independently very simply by assuming the torsion, 
equation (3.5). for a non-Riemannian manifold as described by Schouten 131. 

From Schouten's Ricci calculus, we find the non-symmetric connection of Schrodinger 
in its most general form, satisfying his compatibility condition: 
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where the symmetric FEk is defined as above being careful to consider our index placement 
with respect to Schouten’s. Then, substituting (35). taking care with indices, we arrive at 
our own electrodynamic connection: 

This aflirms Schrodinger’s derivation and the physical significance of the present work 
as it relates to geometric torsion. Specifically, torsion is directly responsible for at least the 
Thomas precession. 

I. Conclusion 

We have derived a new connection from first principles on the simple assumption that the 
electromagnetic field acts to deform basis vectors of a space undergoing parallel transport. 
The connection itself consists of gravitational and electromagnetic ‘force terms’ rather than 
electromagnetic potentials. This seems desirable and contrasts other Weyl-type approaches. 

The connection was shown to generate, not only the Lorentz force for a massive charge 
but also, for the fist time, the classical spin motion with the precise Thomas precession 
term. This equation provided a counter example that clearly pointed to a loss of generality 
in Schrodinger’s affine theory. Furthermore it should be stressed that the defined torsion 
tensor alone yields the Lorentz force equation and Thomas precession. Thus it has been 
shown that torsion can indeed have physical significance. 

It would appear that, in light of all this, we have made progress in at least geometrically 
relating gravitation and electromagnetism. Though this may be the case, a connection alone 
does not suffice. Rather, we must have metric solutions to field equations. It is at this 
juncture that we deviate from the rest of the work in Schriidinger’s little book. We shall 
show in a future paper that this connection can be utilized as an operational ‘template’ 
with which to embed classical electrodynamics into a non-Riemannian manifold from exact 
solutions to new Einstein equations. These new equations follow directly from the inclusion 
of the antisymme&ic term in the electrodynamic connection, the torsion-precisely the term 
Schrodinger rejected. 

Appendix 

In section 2 we provided the basic definitions required to develop the deformation theory in 
going from an undeformed to a deformed frame. This was necessary in order to understand 
what was meant by a deformed connection i= as described by equation (13). For the 
remainder of this derivation it is helpful to refer to the transform diagram in figure Al.  
The undeformed region includes the points P ( x ]  and Q ( x  + dx] while the deformed region 
includes p{f] and Q{f + di). Braces refer to locations. The vectors U and ir always refer 
to the points P and P respectively while vectors w and W refer to points Q and Q. Recall 
x and f are really the same physical point and have only been distinguished to prevent 
confusion during the deformation operation. 

The program is as follows. Beginning in the deformed state at the point Q(i +GI, we 
shall parallel bansport ti3 from Q[f + 6 1  to p{f] giving 6 at P .  This is followed by an 
inverse deformation upon .ir from P(f] to P ( x )  leaving us with e, at P. On the other hand, 
we can also arrive at P by first applying an inverse deformation to 6 getting us to w at 
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P l i l  iditdij 

Figure Al. Paratlel deformation diagram. 

Q(x +dx] followed by parallel transport in the undeformed frame from Q(x +&) to P ( x ) .  
This gives us the vector 6 at P not necessarily equal to v .  We shall require, however, 
that i, = v at P so that the operations of deformation and parallel transport commute. 
We must have this to ensure that the length of the vector v is preserved under a parallel 
deformation. This can only be done at the expense of something else absorbing the effects 
of this transformation and that something else will be the connection. So it will be the 
final 'effectively deformed' connection that we shall label ?[P) to distinguish it from the 
initial undeformed (gravitational) r(P). In addition let us recall that f' = r(G) was the 
source of the inadequate equation (13). We had lost sight of the fact that r[p} # r(G) 
which is to say that the deformed connection is not obtained simply by a substitution of 
the deformed metric tensor G for the g in the undeformed connection. This will have to be 
treated separately as well. However, from the above procedure we shall first relate ?[PI 

We begin in the deformed state by parallel transporting lit from Q to F giving us 
to rp) .  

p = - r;y[F]fip d?' (AI) 

at the point F .  We then apply an inverse deformation to .i, from F to P leaving us with 

U' = c' - Kfip<;[P] (4 

at the point P. Taking the alternate route, we apply a deformation to lit from Q to Q giving 

w ' = l i t u - ~ d < ; [ ~ }  643) 

at Q and then parallel transport w from Q to P leaving finally 

644) 

at P once again. We have placed a tilde over the connection and hence over w at P in order 
to distinguish these from the corresponding quantities had we originated in the undeformed 
state. Also we shall only keep terms to first order in K and &. Substituting (Al) into (M), 
(A3) into (A4), equating ( M )  and (A4) as described earlier and simplifying, we get: 

ij* = wu - - g y [ P ) w f l d x y  

- r$y[~}tiI'Bdiy - K<;(P}liJp -k K<~(P)r&,(~)dd ,?  

= - K ~ i j ~ ~ ~ ( Q } - ~ ~ ? & ( P ] d r ~  -kKI@<~[p)~~, , [P}dXy.  (4 

Now we use 

d i y  = d r y  + K < ~ ( P ) b C u  (A@ 
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for the deformation of the coordinate differential and define 

F;,{P] = r,",{F) + K w & .  647) 

This definition i s  a matter of convenience as we seek 6r here and we shall shortly relate 
r{p) to our r(G) and hence to the initial undeformed (gravitational) connection at P, 
namely r{P].  We can also expand the deformation operator ({e] about P giving 

c ; ~  = c ; ~  + an(; w. (AS) 

Substituting equations (A6)-(AS) in equation (A5) and using the aforementioned 
approximations yields after some manipulation: 

K C P ~ T ~  tc:r;~P] - c;r;,{P] + {;r;o{Pt -a-;,, - ace;] = 0. ( ~ 9 )  

The bracketed quantity must vanish in general leaving: 

qC = -arc; +c;r;,,{Fi - e;r;,,(Fi+ c:r;,cFi. M O )  

Now the first three terms are simply the covariant derivative of (; at p leaving: 

6i-u pc = - < a  s : c { F )  + c:r;,,Pi. (Al l )  

Thus, from equation (A7), we have for OUT effectively deformed connection at P: 

F;v(~l = r , " ~ F i  - ~c;;,cFi + ~ c ; , P i .  (A12) 

We must now find r{p]~ The second term will provide us with the correction we seek for 
OUT effectively deformed connection but for the moment we can do nothing about the third 
'extra' term. Indeed Dienes also anived at precisely such a term in his own transformations 
and seemed to suggest it was undesirable in some sense. However, using OUT extended 
approach, we shall find that this term will exactly cancel out upon evaluation of r{p]. 

To determine r{P] we must go back to the definition of the connection, at i ,  in terms 
of the parallel transport of basis vectors, that is: 

r&,(F] = E u .  (aeEa). (A13 

where 

a, = a, - K c : a a .  ( ~ 1 4 )  

This follows from the vanishing of the covariant derivative of the basis vector Ea. On the 
other hand, we have already obtained equation (13) by simply substituting G for g in the 
original connection, r { ~ ] ,  giving us r(G). It is readily seen that what we had in fact done 
was to simply substitute the deformed E basis for the original e hasis so that 

rFC(G) = E u .  (LICE,) ( ~ 1 5 )  

and this then is really the of equation (13). 
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This can now be easily related to r(p) using equations (A13) and (AI4): 

E' . (&Ea) = E".  (&Ea) - K F  . ((,'&E,) 

or 

r;u{p] = I';o(G) -Kci"&(G). 

Our expression for I=, equation (A12), becomes, keeping order K terms: 

f;clPl = rFv(G) - K $ ~  + K ( J ~ & I F ]  - K ( , ' ~ ~ ( G ) .  (A181 

The last two terms cancel to order K eliminating the 'extra' term and leaving, finally, the 
desired correction: 

G<(F'] = rj,(G) - K ( &  (A 19) 

Using equations (8) and (9) this last term can be rewritten as 

(LLY = ek . k,,;" (AZO) 

since covariant differentiation passes through the basis, thus providing the exact correction 
that yields equation (14), the 'effective' deformed connection. 
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