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The Frenet—Serret equations for a curve in a Riemann space a.. used to derive a theorem regarding the Minkowski
Force. The consequence is that the well-known Lorentz--Dirac equation, involving radiation reaction is already implicit in

the geometry.

The Lorentz—Dirac equation [1—3] describes the
motion of an electron subject to an external electro-
magnetic force and a self-force due to its own radia-
tion field. The external force on the particle is a

Minkowski force given by

FE=mik — 22 [U'# + 04 (0%D,)], )
satisfying identically,

F“v“=0, c=1, 2)
where

vh=de#fds = (00, vF) = (v, 1B%), w=0,1,2,3,

and vy, = + 1 with metric signature (+ — — —). The

terms shown in eq. (1) are the first two “point charge”
terms of an infinite series that represents the force on
an arbitrary distribution of the electron’s charge.
Solving this equation for a step input force results in
solutions that either blow up in time (runaways) or,
upon eliminating these, in a solution wherein the par-
ticle accelerates prior to the application of the force.
Thus, causality is violated, albeit over a very short
‘“unobservable” time interval of the order of the clas-
sical electron radius divided by the speed of light.

Eq. (1) has traditionally been derived using argu-
ments having some physical content. We shall show
that the form of eq. (1) is determined exactly by geo-
metrical considerations alone via the general theory
of curves in a riemannian manifold.

The Frenet—Serret (FS) equations relate absolute

derivatives of the basis vectors on a curve to the same
basis veciors and thus form: a closed set of relation-
ships for a curve ¢ possessing four basis vectors (an
orthonormal tetrad — or OT) in a riemannian space—
time. The basis is normalized in a manner similar to
that of Synge [4] . General properties can be found
in ref. [5]. We shall label this basis T, N, B, C, respec-
tively, the tangent, normal, binormal and trinormal
vectors of the 4-curve where T represents the 4-com-
ponents T* (u = 0,1,2,3), etc. The normalizations are
given by:

(TT)=T“T“=+ 1=vy,,

(NN)=-—-1, (BB)=-1, (CC)=-1,

with all other inner products vanishing. The FS equa-
tions are:

T=kN, N=«kT+7B,
B=-— TN+1C, C= -nB.

3

The dot represents absolute differentiation with re-
spect to s, the arc-length parameter on ¢ (proper time).
K, T, n are respectively the first, second and third cur-
vatures of ¢ and are in general functions of s.

An arbitrary vector F on € can be resolved along
the OT,

F=aT+oN+pB+)C.

We now assume that F is a Minkowski vector, that is,
(FT)=0. It follows that a must vanish and we are
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left with a space-like vector
F=0oN+pB+AC.

Our goal will be to represent N, B, C as functions of
T and its derivatives via the FS equations. By manipu-
lations and appropriate differentiations of egs. (3) to-
gether with identities derived from three successive

differentiations of the invariant [(77) = 1], we obtain:

N=Tik,

B=—@RIK*DT+D) [T+ TTD),

C=0/xm){[T+ 37T - 2kr+«¥) B
—(Klk+k2 -1 T}.

Collecting terms and writing v# for T we get the de-
sired -esult:

FE = o, 0B + oy [U# + 04 (020 ))

+ag [BH+ 304 (090,)] .

C))

Thus one can state the Theorem: The Minkowski
force must be of the form of eq. (4) with no higher-
order derivatives in v* than the third by virtue of the
linear independence of the OT on € in a 4-space.

The coefficients @, @, and a5 are scalar functions
of k, 7,7, 0, p, \. The first and second terms can be
identified with eq. (1) if &; and «; are the constants
m and — %e2 respectively. The third term of (4), a
“pseudo-structure” term, is new and does not occur
in any previous derivation. Its coefficient cannot be
determined by correspondence with a classical expan-
sion since such expansions require some arbitrary
charge distribution to determine an infinite series of
terms beyond the second of eq. (1). Neither can it be
determined from the nonrelativistic quantum version
of the Abraham—Lorentz equation derived by Moniz
and Sharp [6] since in their work even-order time de-
rivatives of x did not contribute. The purely mathe-
matical result obtained in the present work should be
valid for the classical regime and for the quantum
mechanical calculation of the motion. The Moniz and
Sharp work, as applied here, suggests that the pseudo-
structure term might appear in a covariant quantum
derivation of the Lorentz—Dirac equation. As shown
below, this term can significantly modify solutions
of the Lorentz—Dirac equation.

In the non-relativistic limit, retaining the pseudo-
structure term, eq. (4) becomes
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—ab —-bv+md=F,
where
al =m,

ay=—b, a3 =—a.

For constant @ > 0 and F'(¢) the step function given
by
F(t)=0, t<0,

=F =constant, >0, k3

a completely physical solution is found for the condi-
tions that v be bounded and v (0) = constant:

=0, <0,
b= (Fim)(1 —e=t7), >0,
where

7=2a/[b+ (b2 +4ma)l/?] .

The behavior is the usual second-order response to a
step input and thus potentially removes the acausal-
ity inherent in the Lorentz—Dirac equation in a
straightforward way. Indeed, Moniz and Sharp showed
that their quantum derivation guaranteed a stable
causal solution in the point limit.

It must also be mentioned that Rohrlich {3] has
used the FS equations in their 3-dimensional form to
help find solutions of the Lorentz—Dirac equation.
He stresses the significance of this being more than
merely coincidental. The reason for this coincidence
is now clear. The Lorentz Dirac equation is implicit-
ly contained in the FS equations.

In summary, we see that there are not an arbitrary
number of vectors that are functions of v and its de-
rivatives satisfying the definition of Minkowski force
on a curve in 4-space but rather only three, two of
which are present in the Lorentz—Dirac equation.

Furthermore, causality is “built into” relativity.
The failure of causality in the apparently covariant
Lorentz—Dirac equation suggests that it is not the
correct covariant expression — that something is miss-
ing. It is, in fact, generally assumed that quantum
mechanics must play a role at these small distances. : &
The Moniz and Sharp work confirms this assumption.
If the pseudo-structure term cannot be found in clas-
sical physics then perhaps quantum theory will pro-
vide the correct description from the covariant quan-
tum derivation of the Lorentz—Dirac equation.
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