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A new formula describing the scaffold structure of spiral galaxies
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ABSTRACT
We describe a new formula capable of quantitatively characterizing the Hubble sequence of
spiral galaxies including grand design and barred spirals. Special shapes such as ring galaxies
with inward and outward arms are also described by the analytic continuation of the same
formula. The formula is r(φ) = A/log[B tan(φ/2N )]. This function intrinsically generates
a bar in a continuous, fixed relationship relative to an arm of arbitrary winding sweep. A is
simply a scale parameter while B, together with N, determines the spiral pitch. Roughly, greater
N results in tighter winding. Greater B results in greater arm sweep and smaller bar/bulge,
while smaller B fits larger bar/bulge with a sharper bar/arm junction. Thus B controls the
‘bar/bulge-to-arm’ size, while N controls the tightness much like the Hubble scheme. The
formula can be recast in a form dependent only on a unique point of turnover angle of pitch
– essentially a one-parameter fit, aside from a scalefactor. The recast formula is remarkable
and unique in that a single parameter can define a spiral shape with either constant or variable
pitch capable of tightly fitting Hubble types from grand design spirals to late-type large barred
galaxies. We compare the correlation of our pitch parameter to Hubble type with that of the
traditional logarithmic spiral for 21 well-shaped galaxies. The pitch parameter of our formula
produces a very tight correlation with ideal Hubble type suggesting it is a good discriminator
compared to logarithmic pitch, which shows poor correlation here similar to previous works.
Representative examples of fitted galaxies are shown.
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1 IN T RO D U C T I O N

The logarithmic spiral has been the traditional choice to describe
the shape of arms in spiral galaxies. Milne (1946) made perhaps
the first attempt to derive these shapes from his own theory, but his
theory resulted in spiral orbits for stars. Today most astronomers
agree that stellar orbits are essentially circular and that the spiral
arms are the result of an evolving pattern, much like a Moiré pattern
(Lin & Shu 1964; Shu 1992) or a dynamic modal structure (Bertin
et al. 1989a,b; Bertin 1993). That is, the stars define a locus of points
at a given time among a family of circular orbits. We shall call this
locus an isochrone. The simplest such curve that describes galaxies
is the logarithmic spiral and has been used by many (Lin & Shu
1964; Roberts, Roberts & Shu 1975; Kennicutt 1981; Kennicutt &
Hodge 1982; Elmegreen & Elmegreen 1987; Ortiz & LéPine 1993;
Seigar & James 1998a,b, 2002; Block & Puerari 1999; Seigar et al.
2006; Vallée 2002) in their morphological descriptions:

r(φ) = r0ekφ. (1)
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This spiral is usually mathematically characterized by a constant
angle of pitch (though k may be a function of r as well) allowing
this parameter to be used to describe galaxy shapes. The pitch, P,
is defined from Binney & Tremaine (1987) as

cot(P ) = r(φ)
dφ

dr
. (2)

For equation (1), P = tan−1 k is constant. However, it is apparent
when attempting fits that galaxy arms often do not have constant
pitch. This has also been noted by Kennicutt (1981). This is most
evident in strongly barred late-type spirals, whereas early types and
grand designs are essentially constant pitch. In this paper, we present
a new formula, differing from any in the standard mathematical or
astronomical literature, which is capable of describing all spiral
shapes, constant pitch or variable, in an elegant way.

2 N EW FORMULA

Our formula derives from an examination of equations found in
the non-Euclidean geometry of negatively curved spaces. This hy-
perbolic geometry was first discovered and published by Bolyai
(1832) and independently by Lobachevsky. Their work is dis-
cussed in Coxeter (1998). The central formula describing multiple
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parallels measures ‘the angle of parallelism’ (Coxeter 1998) be-
tween a given line and ‘parallel’ lines through a given point not
on the line – the violation of Euclid’s fifth postulate. The an-
gle of parallelism, known as Lobachevsky’s formula, is given by
φ(x) = 2 tan−1(e−x). The Gudermannian function is closely related
and is given by φ(x) = 2 tan−1(ex). The latter function directly re-
lates circular to hyperbolic functions. We have found a new function
closely related to the above that describes the shapes of spiral galax-
ies remarkably well. This formula is given in radial form, where r−1

replaces x in the Gudermannian and scaling degrees of freedom are
added:

r(φ) = A

log
(
B tan φ

2N

) . (3)

This function intrinsically generates a bar in a continuous, fixed
relationship relative to an arm of arbitrary winding sweep. Though
in some instances, observations show gaps between the bar and
arms (e.g. Seigar & James 1998b), nevertheless, arms begin where
bars end so that a continuous bar–arm formula serves as a galactic
fiducial for fitting. This is particularly evident in NGC 1365 of our
galaxy selection and will be described later. A is simply a scale
parameter for the entire structure while B, together with a new
parameter N, determines the spiral pitch. The ‘winding number’, N,
need not be an integer. Unlike the logarithmic spiral, this spiral does
not have constant pitch but has precisely the pitch variation found
in galaxies. The use of this formula assumes that all galaxies have
‘bars’ albeit hidden within a bulge consistent with recent findings.
Roughly, greater N results in tighter winding. Greater B results
in greater arm sweep and smaller bar/bulge, while smaller B fits
larger bar/bulge with a sharper bar/arm junction. Thus, B controls
the ‘bulge-to-arm’ size, while N controls the tightness much like
the Hubble scheme. Fig. 1 shows several examples of these spirals.
We divide the examples according to N-value. The opposing arm
is added by symmetry. Scale plays an important role in that the
interior of the same spiral when expanded could fit a barred galaxy
as well as a grand design. This is demonstrated in Fig. 1(a) where the
scalefactor, A, has been increased by a factor of 6 over the remaining
examples (A = 1). The examples range from barred spirals to grand
designs and large arm sweeps.

3 G ALAXY FI TS

3.1 Down- and up-projection

Galaxy shapes in the sky are projections with respect to a north–
south, east–west coordinate system which we simply define as ori-
ented along Y- and X-axes, respectively, on a graph facing us. Two
angles, namely position angle (PA) and inclination angle (I), are
necessary to down-project a shape from a ‘sky plane’ to a ‘graph
plane’. By the previous definition, the two planes are actually one
and the same. The end result of a two-angle down-projection, PA
followed by I, is a correct but oriented graph shape at a third angle,
γ . In this case, the third angle is the orientation, γ , in the plane
with respect to ‘Y’ or north–south. We recognize the shape in any
direction so it is not important.

This procedure is, however, not arbitrarily reversible. If one cre-
ates a theoretic shape function to compare to an observed galaxy
and simply starts with the major axis aligned along ‘Y’, then up-
projects using the known I followed by PA (reversing the order and
sign of angle), the shape would, in general, be incorrect and we
would require a third Euler rotation, γ . Alternatively, we could ap-
ply the ‘final orientation’, γ , determined from down-projection as
the first rotation about Z, and then apply I followed by PA and find
the correct sky shape. Equivalently, one could replace φ in formula
(2) by φ − γ and achieve the same effect. It is clear from either
view that the third angle is necessary for up-projection otherwise a
serious shape error could result. The necessity for a third angle is
most obvious in cases where a galaxy shape is not equiaxial in its
plane. There are then two unique axes in the sky plane, the major
axis as viewed and the intrinsic long axis, and thus the need for a
third angle to reconcile them. Circularly symmetric tightly wound
spirals and face-on galaxies do not require a third angle, but many
other structures, as will be demonstrated, do.

3.2 Galaxy fits

We have fitted many galaxies with formula (2). Below we present
fits to a variety of spiral galaxy shapes, some of which are difficult to
describe with any other formula. The polar isochrone can be rotated

Figure 1. Examples of equation (2) for varying N and B.
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166 H. I. Ringermacher and L. R. Mead

Figure 2. NGC 1365: best-fitting isochrone (red) from equation (2). N =
16, B = 0.4, Euler angles (47,62,18). Log-spiral (dashed cyan): 18◦ pitch.
Credit: NOAO/AURA/NSF.

through three Euler angles (α, β, γ ) about the (Z, Y , Z) axes to best
fit the observed galaxy. In principle, the three Euler angles define
an arbitrary rotation in a three-space uniquely. Here, we define the
three rotations as follows: the first rotation, α, counter-clockwise
(CCW) about the Z-axis out of the graph plane; the second rotation,
β, clockwise (CW) about the rotated Y-axis in the graph plane and
the third rotation, γ , CCW about the rotated Z-axis. The angle α

is the PA and β is the I when γ is not needed and the image is
correctly sky-oriented. We shall call the third angle, γ , the ‘twist’.
The more circular a galaxy shape is or the more face-on it is, the
less the need for twist. The three angles fit rather tightly. Typically
a few degree variation shows significant differences in the global
fit. Fig. 2 shows a best eye fit of formula (2) and the log-spiral (1)
to NGC 1365, a classic barred spiral, traditionally classified SBbc.
Pre-rotated graphs are seen in the lower left. Cloned galaxies are
shown in the upper right for clarity. It is seen that a log-spiral with
an 18◦ pitch from Kennicutt (1981) cannot fit over the full range of
the arms. In this case, a good match was chosen near the arm–bar
junction. A good match could have been chosen along the distant
arms or an average match could have been chosen. What is clear
is that this galaxy has a seriously variable pitch. Traditionally, an
‘average’ pitch is chosen and is obtained by a variety of methods.
Unlike our ‘eye fit’ of 2π or greater, these average matches are
taken over varying radial intervals and do not, in general, sam-
ple all the available range. For example, although both Kennicutt
and Seigar use averaging, Kennicutt (1981) finds the average pitch
angle for NGC 1365 to be 18◦ while Seigar et al. (2006) find it
to be 35◦. Clearly, Seigar’s analysis favoured an interior (near the
bar-arm junction) average, while Kennicutt’s favoured an exterior
(outer arms) average. We found that the outer arm pitch approached
a 10◦ limit, while the innermost pitch was far greater than the Seigar
value. It is no wonder that a common value cannot be agreed upon.
How good the agreement is depends strongly on the precise point
chosen for the pitch origin. Both the method of fitting (here, a global
fit) and the presence of ‘twist’ will affect the pitch origin. This is
demonstrated in Fig. 3, where NGC 1365 is fitted with zero twist.
The bar–arm junction is severely mismatched thus dislocating the
pitch origin. An average pitch for this fit would favour an ‘exterior’

Figure 3. NGC 1365: best-fitting isochrone (red) from equation (2). N =
16, B = 0.4, Euler angles (47,62,0).

Figure 4. M51: best-fitting isochrone from equation (2). N = 4, B = 0.63,
Euler angles (90,0,0). Log-spiral (dashed cyan): 17◦ pitch.

value since the pitch origin is well away from the junction. Fig. 4
shows a fit of both equations to M51. Both are excellent fits in-
dicating that this grand design spiral is close to constant pitch.
Fig. 5 shows a fit to NGC 1097, classified SBb. This is essentially
the same shape as NGC 1365 with fitting parameters (N = 16, B =
0.4), but differing arm length and position. The log-spiral (8◦ pitch)
is very good for most of the exterior arm but fails along the interior
due to varying pitch. The Kennicutt pitch is 17◦. Fig. 6 shows a
fit to NGC 1300, also SBb, which again has parameters (N = 16,
B = 0.4) suggesting that large barred galaxies may have a univer-
sal shape. NGC 1300 shows some deviation in the upper arm, but
the formula assumes perfect, symmetric arms. Deviations are not
expected to be fit for any number of causes. Note that the formula
acts as a ‘scaffold’ description and will not create the detailed inner
bar structure but rather a continuous bar replacing it.

Fig. 7 shows a best fit to NGC 4731 for (N = 2, B = 3). This
galaxy can be equally well fitted by the logarithmic spiral (equa-
tion 1) for the large pitch factor, k = 2.3, corresponding to 67◦.
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The scaffold structure of spiral galaxies 167

Figure 5. NGC 1097: best-fitting isochrone(red) from equation (2). N = 4,
B = 0.08, Euler angles (52,37,23). Log-spiral (dashed cyan): 8◦ pitch.

Ring galaxies are a special class that cannot be described by
equation (1). However, an analytic continuation of formula (2),
where tangent is replaced by hyperbolic tangent, is capable of
describing ring galaxies with spiral structure. The analytic con-
tinuation is obtained by setting B ≡ 1/tanh (φ0/2N ) and replacing
(φ, φ0) → (iφ, iφ0) to yield

r(φ) = A

log
(
B tanh φ

2N

) . (4)

Fig. 8 shows NGC 4622, classified SAb, fitted with formula (3). This
formula produces rings with either ingoing or outgoing spirals. A
log-spiral with zero pitch would generate a ring – but no arms.
Unlike a log-spiral, this formula generates both. The parameters
used were: outgoing: N = 7, B = 1.75; ingoing: N = 4, B =
0.4). In this case, several rings were matched and overlaid to fit
this unusual galaxy structure subject to the constraint that all arms
emanate from a single ring. The spiral structure here is particularly
sharp and well fitted by the formula. The outward arms are leading,
while the inward arms (blue) are trailing in this ‘reverse’ galaxy.

Figure 7. NGC 4731: best-fitting isochrone from equation (2). N = 2,
B = 3, Euler angles (110,0,0). Log-spiral (dashed cyan). 67◦ pitch.

4 FO R M U L A U S I N G A N G L E O F P I T C H

Astronomers generally use an angle of pitch to describe the shape
of spirals. Formula (2) can be renormalized to accommodate a
referenced angle of pitch replacing B. The angle of pitch is defined
as the angle between the tangent to the curve at a given point (r ,
φ) and the tangent to a circle of radius r through the point. The
renormalization of (2) is described in Appendix A. The result is a
unique formula, referenced only to the angle �, the angle of pitch
at ‘turnover’ (see Appendix A):

r(φ) = R�

1 − � tan(�) log
(

φ

�

) . (5)

We do not yet have an equivalent renormalization of formula (3).
For a unit bar radius, the single parameter, �, determines the shape
of spirals with nearly constant or variable pitch. Fig. 9 shows
examples of the use of (4) for Hubble classes Sa, Sb and Sc with
� varying from 0.4 to 1.0 (9a through 9e). For larger � (9f), the
arm no longer turns over. An example of this shape is NGC 4731
(Fig. 7).

Figure 6. NGC 1300: best-fitting isochrone from equation (2). N = 4, B = 0.08, Euler angles (−20,55,0): rot (Z, X, Z). Log-spiral (dashed cyan): 9◦ pitch.
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Figure 8. NGC 4622: best-fitting isochrone from hyperbolic equation (3).
Euler angles (0,23,0).

5 C O R R E L AT I O N O F ‘T U R N OV E R ’ P I T C H
WITH HUBBLE TYPE

Since the Hubble scheme is a simple morphological classification
organizing galaxy shapes in terms of their arm sweep, bulge size
and relationships between the two, one might expect a strong corre-
lation between the arm pitch angle and the classification parameter.
Understanding that such a scheme is qualitative, depending strongly
on the observer, however, does not explain why, to date, there is es-
sentially no correlation (Seigar et al. 2006). Kennicutt (1981) found
a very weak correlation at best. It is therefore of interest to examine
the relationship of our parameter �, the angle of pitch at turnover,
to Hubble type. We have selected 21 well-defined galaxy shapes
from the tables of Seigar & James (1998a,b), Seigar et al. (2006),
Kennicutt (1981) and Rubin et al. (1985), and evaluated � for each
from formula (4) by a best-eye global fit as exemplified in Figs 2
through 8 (Table 1). These fits are very tight with variations of only
a few degrees causing significant deviations about each rotation.
This is an iterative process. First, a rough shape is chosen based on
the standard classification using (N, B) parameters of equation (2).

Table 1. Hubble types and arm pitch of 21 spiral galaxies.

Galaxy Type � (rad) � (◦) P (◦) Type Relabels

M51 5 0.52 29.79 16.7 SAc
M81 5 0.512 29.34 11.3 SAb SAc
NGC 4321 5 0.535 30.65 14.6 SAc
NGC 2997 5 0.543 31.11 15.6 SAc
M74 5 0.526 30.14 15.6 SAc
NGC 3198 5 0.537 30.77 15.1 SAc
NGC 4643 4 0.453 25.96 8.0 SAbc
NGC 5364 4 0.474 27.16 10.2 SAc SAbc
NGC 1097 3 0.415 23.78 8.0 SBb
NGC 1300 3 0.415 23.78 9.1 SBb
NGC 1365 3 0.423 24.24 18.0 SBbc SBb
NGC 7096 3 0.398 22.80 8.5 SAa SAb
NGC 1357 3 0.395 22.63 5.7 SAa SAb
NGC 4593 3 0.427 24.47 9.1 SBb
NGC 1417 3 0.42 24.06 9.1 SABb
NGC 5754 3 0.425 24.35 9.1 SAb
NGC 266 3 0.397 22.75 11.3 SBab SBb
NGC 3281 3 0.415 23.78 6.3 SAab SAb
NGC 1398 2 0.383 21.94 4.6 SBab
NGC 3504 1 0.337 19.31 4.6 SBb SBa
NGC 4622 1 0.362 20.74 4.0 SAb SAa
NGC 2273 1 0.346 19.82 4.0 SAa
NGC 4731 4 2.569 147.19 66.5 SBc/P

Then, PA is easily set while a first estimate of inclination is taken
from the literature and fine-tuned. In most instances, this is in-
sufficient for a good fit and twist is necessary. N and B are then
fine-tuned for best fit. The � parameter can be calculated numeri-
cally from equation (A8) for a given (N, B) pair. Equation (2) can be
degenerate in that two (N, B) pairs can result in essentially the same
fit. For example, NGC 1365 (Fig. 2) was fit by (16, 0.4) but can
equally well be fit by (4, 0.08). However, both of these pairs result
in the same � parameter, 0.42 rad, within 2 per cent. Thus, the �

parameter is a unique shape discriminator. Alternatively, knowing
the � behaviour of equation (4), one can use it directly to fit the
shape. The � parameters for the 21 galaxies are shown in Table 1.
We also best eye fit a logarithmic spiral (equation 1) to the galaxies.

Figure 9. Examples of equation (4) for various ‘turnover’ pitch angles, �, with Hubble classes indicated.
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Although these matched our fit often, there were, on average, inte-
rior and exterior deviations. The constant pitch P (in degrees) for
each fit is also shown in Table 1, Column 5. The NGC 1365 pitch
variation was so severe that Kennicutt’s ‘average’ of 18◦ was chosen
as a compromise between our fit at 10◦ and Seigar’s ‘average’ at
35◦. The de Vaucouleurs (1959) numerical stages are displayed in
Column 2 (a = 1, b = 3, c = 5) corresponding to the Hubble type
of Column 6 or corrected from Column 7, a relabelling found to
produce consistency among all the a, b and c categories. The basis
for this relabelling was first suggested by Kennicutt (1981), where
he indicated that certain morphological features could generate an
inconsistency between arm pitch angle and expected Hubble type.
As seen, Column 2 includes the relabelling corrections. Relabelling
resulted in shifting five galaxies by one category (e.g. b → c) and
four galaxies within one category (e.g. bc → b). Fig. 10 shows the
correlation of � (degrees) with Hubble type using the corrected
type, Column 2. The goodness of fit to the straight line,

� = 2.69 × (de Vauc Hubble stage) + 16.22,

is 94 per cent. If this re-assignment is not made, our own parameter
also shows only weak correlation (Fig. 11) with 62 per cent goodness
of fit.

y = 2.69x + 16.22

R2 = 0.94

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

0 1 2 3 4 5 6

Hubble  type  (a=1, b=3, c=5)

P
it
c
h

 p
a
ra

m
e
te

r,
 P

h
i 

(d
e
g

)

Figure 10. Pitch parameter � versus relabelled Hubble type.
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Figure 11. Pitch parameter � versus ‘as is’ Hubble type.
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Figure 12. Log-spiral pitch P versus relabelled Hubble type.
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Figure 13. Log-spiral pitch P versus ‘as is’ Hubble type.

Even more interesting is a plot of the constant log-spiral pitch, P,
versus Hubble type (Fig. 12). These are painstakingly fitted values
and in most cases closely matched our fit from equation (4) but
with averaged deviations. Nevertheless, even using the relabelled
Hubble-type values, the log-spiral pitch shows only a weak corre-
lation of 64 per cent with type, but similar slope to ours. When P is
plotted against the standard-type values (Fig. 13), the correlation is
worse at 58 per cent but not much worse. This is strong evidence that
the log-spiral itself is inadequate to describe spiral galaxy shapes
and its failure is only compounded by misclassification. To prove
that our relabelling shifts result in a self-consistent morphological
description, we overlay the graph-plane 21 shapes in the relabelled
categories a, b and c. The overlays for each type, using our equation,
are very nearly identical and clearly distinguishable thus justifying
the class relabelling. The overlays were made after normalizing the
graph-plane shapes so that an arm intercepts the x-axis at unit length
after a CW π arm rotation.

This procedure gives a correct perspective on the bar (bulge) arm
relationship as can be seen progressing from Sa with a large bar/tight
arms to Sc with a small bar/sweeping arms. All but two galaxies fall
precisely in these three shapes – exactly so for π rotation and nearly
so up to 2π rotation in types a and c. The two mid-class galaxies
literally do not fit these three and fall between.
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Figure 14. Overlays of 21 galaxy deprojections showing consistency of Sa, Sib and Sc shapes, based on arm normalization.

6 D ISCUSSION

We have shown that the constant pitch logarithmic spiral is an
inadequate discriminator of Hubble type for spiral galaxies, which
basically explains why poor correlations with type are the norm.
The pitch, of course, can be made variable, but that would introduce
additional parameters dependent on each fitted galaxy. We present
a new, elegant, single parameter formula, closely related to non-
Euclidean geometric functions, with an intrinsically varying pitch
that describes all the Hubble classifications faithfully. This function
has a natural, correctly proportioned, bar continuously transitioning
to the arms that serve as a shape fitting fiducial permitting the
extraction of a tightly discriminating pitch parameter. Its analytic
continuation naturally describes spiral ring structures with ingoing
or outgoing arms – something not achievable from a logarithmic
spiral. The fits of these new functions to galaxies are remarkable.
The correlation of the new pitch parameter to ideal Hubble type
is excellent – only when a number of galaxies are reclassified for
self-consistency. Without reclassification, no strong correlation of
arm pitch to Hubble type can ever be expected for any formula.

With the current interest in morphological evolution, it may be
desirable to have a reliable quantitative classifier of galaxies. We
have presented two formulae. The simpler one (2) is essentially
a two-parameter fit. The parameters can, however, be degenerate.
Formula (4) is a renormalized version of (2) that is self-referenced
to the angle of pitch at the spiral ‘turnover’ point and is unique for
every shape. Formula (4) reproduces, precisely, all the shapes of (2)
for appropriate choices of the parameter �, including sharp arm-
to-bar junctions, at small values, suitable for some barred spirals.
We have made an initial attempt at parametric classification (see
Fig. 9). Spirals with pitch parameter less than 0.40 rad might be
classified as Sa, while spirals with pitch parameter between 0.4
and 0.5 rad might be classified as Sb. The class Sc, with pitch
parameter greater than about 0.5 rad, has a broad range of sweep.
We have not included class d through m because these are even more
qualitative. These are preliminary judgements. In order to use these
formulae properly, one must understand their parametric behaviour,
angle range and applicability for many more well-shaped galaxies.
A practical application of this formula, for example to automated
classification, is possible – since the global fitting procedure is well
defined – but is beyond the scope of this paper.
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APPENDI X A

The pitch angle, P, from (1a) applied to the isochrone (2) is given
by

U ≡ cot(P ) = r(φ)
dφ

dr
= −N sin(φ/N ) log[B tan(φ/2N )]. (A1)

It can be shown that the unit tangent vector to the isochrone is

T̂ = (cos φ − U sin φ) î + (sin φ + U cos φ) ĵ√
1 + U 2

. (A2)

Now, we wish to refer the isochrone to a particular point (R�, �)
on the curve. We can therefore write

R� = A1

log[B tan(�/2N )]
= A1

log[B] + log[tan(�/2N )]
. (A3)

Solving for log [B],

log[B] = A1

R�

− log[tan(�/2N )]. (A4)

Thus, referenced to a particular point (R� , �), the isochrone (2)
may be written as

r(φ) = R�

1 + R�

A1
log

[
tan(φ/2N)
tan(�/2N)

] . (A5)
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A1 Choice of (R� , �)

A convenient choice might be an angle that approximates R� as the
‘bar radius’. One such unique angle is at the ‘turnover’ point of the
isochrone where the tangent vector points along ĵ . From (A2), this
condition is

tan � = 1/U. (A6)

From (A6) and (1a), we find

� = P . (A7)

That is, the angle φ at turnover is precisely the angle of pitch at
that point. So this is indeed a unique point. From (A6), using the
definition of P from (1a), one finds that

log[B tan(�/2N )] = −1

N sin(�/N ) tan (�)
. (A8)

From (A3) and (A8), we also have

R�

A1
= −N sin(�/N ) tan (�) . (A9)

We use this relation to fully renormalize the isochrone with respect
to {R�, �, N}

r(φ) = R�

1 − N sin(�/N ) tan (�) log
[

tan(φ/2N)
tan(�/2N)

] , (A10)

where {R�, �, N}≡ {bar radius, angle of pitch at turnover, winding
number}.

For grand design spirals, replace ‘bar radius’ by ‘bulge radius’.
Note that (A8) can be used to relate the (�, N ) formula (A10) to
the original (B, N ) formula (2) by solving numerically for �, given
B. Typical N factors range from 2 to 16.

For N ≥ 2, we note that relation (A10) is essentially independent
of N with excellent fits to all the previous images and plots. This
can be seen by using a small angle approximation for functions con-
taining N. The pitch at this point is typically around 30◦. Significant
errors accumulate in the fits for N < 2.

That is to say, the following formula is a good approximation for
N ≥ 2 – nearly all cases:

r(φ) = R�

1 − � tan (�) log
(

φ

�

) . (A11)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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