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Abstract The flow of heat in solids has long been known to
possess an electric current analogy applicable to both steady
state and transient flows. In the present work we assume
a vector analogy between Fourier’s law and the classical
electric displacement to develop a method of handling dis-
tributed porosity in composite materials subject to heat flow
in a way analogous to dealing with distributed dielectric re-
gions in solids subject to an external electric field. The effect
of the geometry of “depolarization” regions in an electric
displacement field and “demagnetization” regions in a mag-
netizing field can be carried over to the effect of “dether-
malization” regions in a heat-flux field. The analogy pro-
vides a simple analytic way of determining the effects of
porosity shape on thermal conductivity which can be sig-
nificant and can violate the usual law of mixtures approach.
For uniformly distributed porosity of known aspect ratio in a
given region, the volume-fraction porosity of the region can
then be evaluated from a simple measurement of the thermal
diffusivity. This approach was originally successfully tested
over a limited range of variables when the model was devel-
oped and has recently been validated to good accuracy over
a large range of porosity aspect ratios.
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1 Introduction

Porosity evaluation plays an important role in the determi-
nation of the integrity of composite materials. For example,
porosity content is known to reduce strength [1]. On the pos-
itive side, controlled porosity can alter the thermo-physical
properties of materials such as insulation. In either case it is
useful to have a rapid means of measuring porosity content
other than metallographic preparation. Flash thermography
provides a simple technique to evaluate porosity in struc-
tural composites ranging from carbon fiber-reinforced plas-
tics (CFRP) to ceramics. A variety of such methods have
long been available, but all the quantitative approaches have
one thing in common, measurement of the thermal diffusiv-
ity. Thermal diffusivity is defined as

α = K

ρc
,

where K , ρ and c are, respectively the thermal conductiv-
ity, density and specific heat. The goal of the present work
is to understand how each of these thermal parameters is in-
fluenced by the presence of porosity and how to deal with
it.

2 Dethermalization Theory

2.1 Law of Mixtures

In general we are dealing with the thermal evaluation of
porosity in a thermally anisotropic material. However, we
will limit ourselves with through-thickness heat flow—that
is, flow perpendicular to the fiber planes in, for example,
graphite-epoxy composites. It is reasonable to expect that
the effect of porosity is simply to reduce the thermal con-
ductivity of the material in some average way as well as to
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reduce the density. We also know that simple scalar proper-
ties such as density can be treated with a Law-of Mixtures
(LOM) analysis which states that the average density is the
volume-fraction-weighted sum of the densities of the con-
stituents. Using the subscript M for matrix (for example the
graphite-epoxy averaged material property) and P for poros-
ity (air) where V is the volume fraction, we have, for a 2-
phase mixture:

ρ = V
M

ρ
M

+ V
P
ρ

P
; V

M
+ V

P
= 1.

If we take the specific heat to be essentially invariant in the
averaged medium, we can write the density specific heat
product (volumetric heat capacity) as a LOM:

(ρc)∗ = (1 − V
P
)(ρc)

M
+ V

P
(ρc)

P
. (1)

Terms of order V
P
ρ

P
can be ignored for air or vacuum.

2.2 Electromagnetic Heat Flow Analogies

Thermal conductivity is considerably more complex than
density since it has a tensorial nature depending on pore
shape and heat flow direction. We have shown in an ear-
lier study [6] of porous CFRPs, completed in 1994, that
density/porosity fits a LOM model while thermal conduc-
tivity does not. In that work we examined porosity standards
made for us by Celsius Materialteknik AB of Sweden and
Sikorsky of Stratford, CT. These samples included quasi-
isotropic, unidirectional and weave layups. Porosity was an-
alyzed quantitatively ultrasonically and by sectioning. The
intent of the study was to use flash thermography for the
first time to quantitatively evaluate porosity. This work in-
corporated the first known use of the focal plane array IR
camera for NDE. At that time the camera, made by Amber
Eng., was liquid nitrogen cooled with a 128×128 pixel InSb
array.

It was clear that thermal conductivity is a complicated
property of the CFRP matrix/porosity mixture and depended
on pore shape. However, similar work has been done with
dielectric mixtures and electrical conductivity. It has long
been known that there is a strong analogy between heat flow
and electric current flow based on the conduction equation,
compared to Fourier’s law of heat flow:

J = σE = −σ∇ϕ

f = kF = −k∇T

Bold letters represent vectors. J is the electric current, E the
electric field, f is the heat flux and k is the thermal conduc-
tivity analogous to the electrical conductivity, σ . Tempera-
ture and potential are therefore analogs. This analogy is ob-
vious, but the electrical side holds only for conductors. For
electric insulators (dielectrics), electric displacement, D, re-
places current and we can build a second analogy from this.

The normal component of electric displacement, D, is con-
tinuous across a boundary between two dissimilar materials
as is the heat flux vector, f . While the electric displacement
is induced by an electric field, (a potential gradient), the heat
flux is induced by a temperature gradient. Temperature and
potential are analogs as before.

The importance of this analogy derives from the failure of
thermal conductivity to follow a LOM. A dielectric analogy
might provide an established method for handling porosity
in matrix materials. Dielectric and magnetic permeability
studies have been around a long time and, in particular, com-
plex electrical analyses of mixtures consisting of a matrix
with a dilute embedded material are referenced in [2]. These
studies indicate that the shape of the embedding plays an im-
portant role in determining the average electric or magnetic
field in the material. An applied electric or magnetic field
in the material will polarize or magnetize the embedding.
The shape of the embedding will effect a depolarization
or demagnetization due to the presence of reverse-induced
dipoles, a classic result first noted by Bozarth and Chapin [3]
and discussed, for example, in Kittel’s Introduction to Solid
State Physics [4]. The relationship to thermal work was first
suggested by D.K. Hale [2] and refers to the demagnetiza-
tion analyses of Stoner [5]. We were able to successfully
translate these electromagnetic approaches for dielectric in-
clusions to thermal approaches. These results were first vali-
dated by the data fits we obtained [6] for a variety of volume
fraction porosities of a given shape—fits that could only be
found given the dielectric analogy. Details of this first vali-
dation will be described in Sect. 3 along with the most recent
tests of Mayr et al. [8]. We present a review below for refer-
ence in understanding the thermal/dielectric analogy.

2.3 Choice of Units

Although SI units are in common use, for electromagnetic
theory different units are often chosen depending on conve-
nience for a particular application. For the electromagnetic
work below, we choose electrostatic (esu) units to avoid the
constant presence of the vacuum permittivity and permeabil-
ity (ε0 and μ0 respectively). This requires that we translate
the analogy to heat using cgs units. One can, of course easily
convert any results to SI units. For convenience we define all
thermal units below:

Thermal conductivity k (cal/s cm °C); density ρ (g/cm3);
specific heat c (cal/g °C).

In these units, the thermal conductivity of the best metal-
lic conductor, silver, is approximately 1.0 cal/s cm °C, thus
allowing for straightforward approximation assumptions.

2.4 The Dielectric Analogy

The embedded dielectric is taken to be oblate spheroids
of revolution since these closely mimic the geometry of
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“squashed” porosity in ply layups. Actual porosity geom-
etry will vary. The electric displacement, D, in a dielectric
medium arising from an applied electric field, E, in the di-
electric, is given by:

D = εE = −ε∇ϕ, (2)

where ε is the dielectric constant of the medium. This is to
be compared, as before, to Fourier’s law,

f = kF = −k∇T , (3)

We shall refer to F = −∇T as the thermal field. The electric
displacement in the medium is also the sum of the electric
field, E, and polarization, P , induced by the field acting on
bound surface charges:

D = E + 4πP , P = χE, (4)

where χ is the electric susceptibility. Analogously, we may
define a thermal displacement and polarization field as:

f = F + 4πP
T
, P

T
= χ

T
F . (5)

From (2) and (4), the dielectric constant is related to the elec-
tric susceptibility:

ε = 1 + 4πχ (6)

Thus we can define a “thermal susceptibility” related to the
conductivity from (3) and (5):

k = 1 + 4πχ
T
. (7)

We note the thermal susceptibility is generally negative, for
example, in cgs units, the most thermally conductive metal
is silver with k = 1.0 cal/s cm °C. Thus k ≤ 1.0.

In practice, the geometry of the electromagnetic medium,
which will affect the distribution of induced dipoles on the
surfaces, will introduce a “depolarization” field, −4πηiP

which is added to the applied field (field without dielec-
tric), E0, thus defining the internal field, E, in the dielectric.
ηi is the “depolarization” factor.

E = E0 − 4πηiP . (8)

The thermal analogue, due to the negative χ
T

, must have the
opposite sign.

F = F 0 + 4πηiP T
. (9)

Thus the thermal polarization will act to “dethermalize”
the region by reducing the heat flux. We may even refer
to “thermal dipoles” as defined by hot (+) and cold (−)
“charges” bounding a region, the thermal field defined point-
ing from hot to cold. This can be hypothesized for two rea-
sons: (1) Point sources and sinks are describable by means
of Green’s functions in the heat equation as discussed, for
example, in Carslaw and Jaeger [10]. (2) The present theory
has been validated both by Ringermacher et al. [6] and Mayr
et al. [7, 8], thus supporting the concept of thermal “charge
distributions”. More comments will follow later.

The depolarization factor is strictly a geometric quantity
related to the shape of the embedding and defined from a
weighted sum over spatial orientations of the ellipsoids:

η =
3∑

i=1

ηi = 1. (10)

This is then directly transferable as a “dethermalization fac-
tor” in heat flow. Thus, if the direction perpendicular to the
plane of rotation of the ellipsoid is defined as longitudinal
and in-plane as transverse then we have for the case of cylin-
drical symmetry with two equivalent in-plane orientations:

η
L

+ 2η
T

= 1. (11)

For the case of spherical symmetry with η
L

= η
T

, we have
η

L
= η

T
= 1/3. The general formula for η

L
, taken directly

from electromagnetic theory, depends on the “aspect ratio”,
m, (long/short axis), of the ellipsoid, where the short axis,
along which the heat flows, is “longitudinal”:

η
L

= m2

(m2 − 1)
−

[
m2

(m2 − 1)3/2

]
sin−1

[
(m2 − 1)1/2

m

]
.

(12)

The ηi of Eq. (8) is taken along the direction of the applied
field. Thus a thin disk with plane oriented perpendicular to
the field will induce the maximum longitudinal depolariza-
tion with η

T
= 0 and η

L
= 1 while a long needle oriented

along the field will have the least depolarization effect with
η

L
= 0.
The depolarization effect is equivalent to a change in the

effective dielectric constant of the medium as is evident from
Eqs. (2), (4) and (6). It has been shown [5] that the effective
dielectric constant of a medium consisting of a mixture of
a matrix with dielectric constant ε2 and ellipsoids of revo-
lution of dielectric constant ε1 distributed and oriented ran-
domly (Fig. 1b) is given by

ε∗ = ε2 + V1(ε1 − ε2)

3

3∑

i=1

[
εm

εm + ηi(ε1 − εm)

]
, (13)

where εm is the effective mean value of the dielectric con-
stant of the medium around each particle and ηi are the de-
polarization factors along the three ellipsoidal axes.

If we choose to evaluate ellipsoids that are randomly dis-
tributed but oriented with their axes of rotational symmetry
normal to the plane (as is the actual case for most porosity—
Fig. 1c) we simply drop the factor of three spatial average
and use the depolarization factor, η

L
, along the applied field

ε∗ = ε2 + V1(ε1 − ε2)

[
εm

εm + η
L
(ε1 − εm)

]
. (14)

Equation (14) is quite sensible, for when η
L

= 0, for the
case of long needles aligned along the field, this reduces to
the standard LOM equation, ε∗ = V1ε1 + V2ε2.
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Fig. 1 Effects of pore shape on fit of CFRP data from Ref. [6] to the dethermalization model of porosity comparing results of using Eq. (15) with
the added 1/3 factor in (a) and (b) and with exactly Eq. (15) in (c)

The thermal analogy simply requires replacement of di-
electric constant, ε, with the thermal conductivity, k, as de-
scribed in Eqs. (6) and (7) leaving us with the desired result
for the present work:

k∗ = k
M

+ V
P
(k

P
− k

M
)

[
km

km + η
L
(k

P
− km)

]
. (15)

Here, η
L

, defined by (12), is the “dethermalization factor”.
k

M
is the matrix thermal conductivity and km is now the

mean thermal conductivity of the medium around each par-
ticle. We use the lowest order approximation that km

∼= k
M

which should be taken as the weighted average of the ther-
mal conductivity for a generally orthotropic medium. This
will depend on ply layup.

We can finally write the effective thermal diffusivity of a
porous medium as:

α = k∗

(ρc)∗
(16)

where the volumetric heat capacity, from Eq. (1), is given
by:

(ρc)∗ = (1 − V
P
)(ρc)

M
+ V

P
(ρc)

P
. (17)

The above thermal equations form the basis of what we
call the “Dethermalization Theory” of porosity [6]. From
these, we can now estimate what volume fraction poros-
ity might cause a measured thermal diffusivity, α, given a
known porosity aspect ratio, m.

3 Validation

The work described above was originally developed and
tested, as described in Ref. [6], for studies of porosity in
CFRP. In that work, the samples mentioned in Sect. 2 were
prepared using an autoclave process resulting in “pancake”
ellipsoidal-shaped interlaminar porosity. Porosity volume
fractions and shape aspect ratio were measured from sec-
tioning and ultrasonics. It was found that the average poros-
ity had an aspect ratio, m = 7 ± 2. The samples used in
this early work had volume fraction porosities varying from
0.001 (control) to about 0.06 with one specimen at 0.16. The
dethermalization model was fitted to test different distribu-
tions of porosity by plotting the measured through-thickness
thermal diffusivity against the known volume fraction poros-
ity in the various samples. Density and specific heat used
in the calculation of diffusivity from Eq. (16) assumed a
LOM. Figures 1a and 1b show thermal diffusivity vs. vol-
ume fraction porosity fits for random spheres and randomly
oriented ellipsoids, respectively using Eq. (15) for the ther-
mal conductivity but with the extra 1/3 factor as in the anal-
ogous Eq. (13). The curves were normalized to the fully
dense specimens. Neither one even remotely fits the poros-
ity range. Figure 1c shows the fit for random planar-oriented
ellipsoids using exactly Eq. (15) for the conductivity. This
best fit is for an ellipse aspect ratio of m = 8 and dethermal-
ization factor of η

L
= 0.83, from Eq. (12), and is shown in

more detail in Fig. 2. This compares well with the measured
aspect ratio m = 7 ± 2, thus confirming the assumptions of
the model.
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Fig. 2 Data fit, using Eqs. (15) and (16) from Ref. [6] for theoretical
porosity aspect ratio of 8:1 resulting in a dethermalization factor of
0.83. Measured aspect ratio was 7:1

Equation (15) has also recently been tested and validated
by Mayr et al. [7, 8]. They utilized pulsed thermography to
measure thermal diffusivity in samples of CFRP with em-
bedded porosity. By changing the volume % porosity from
0.3 % to 10.5 %, they were able to adjust pore aspect ratio
over a range of m = 1 to m = 5, thus testing the aspect ratio
variation which our original work lacked. They measured
the pore aspect ratio from CT imaging. In practice, since
heat flows around pores, a weighted average of the in-plane
and perpendicular matrix conductivities, depending on ply
layup, should be used for km, the “mean” conductivity, as
was demonstrated by Mayr. They obtained a very good fit of
the diffusivity as a function of volume % porosity, a steeply
falling curve toward large aspect ratio. The least-squares er-
ror to the above model was approximately ±3 % over the
measured range along the curve. An alternative analysis by
Kerrisk [9], based on an assumption of spherical voids only
and corrected LOM for thermal conductivity, was shown by
Mayr to produce a relatively flat curve, in agreement with
the present theory for the spherical limit m = 1, but ap-
proaching errors as high as 30 % for larger aspect ratios,
consistent with a LOM failure.

4 Conclusions

We have developed a methodology for quantitative analy-
sis of measured thermal diffusivity in porous materials that
takes into account the shape of the porosity affecting heat

flow. The methodology is based on an exact analogy be-
tween electric displacement in dielectric materials and heat
flux in thermally conductive materials through Fourier’s law.
As a result, since extensive analyses of electrostatic effects
in dielectrics exist in the literature, these can be directly
translated to their thermal equivalents. In the present work
we have shown that thermal conductivity is the analogue
of the dielectric constant and were able to apply the well-
known theories of depolarization effects arising from dielec-
tric embedding shape, to “dethermalization” effects arising
from porosity shape for heat flow. A simple formula relates
volume fraction porosity to a measured thermal diffusivity,
given a known porosity aspect ratio.

Since our work was based on precise electromagnetic
analogies to polarization effects utilizing electric charge and
electric dipoles, it would suggest that these concepts can be
extended to heat flow in insulative materials in the form of
thermal charge and thermal dipole distributions. This is rein-
forced by the successful testing of the thermally-generalized
results described above. Extensions of this work in new di-
rections are made possible by utilizing these proven con-
cepts.
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